skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chelle, Avyakta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the realm of collaborative learning, extracting the beliefs shared within a group is a critical capability to navigate complex tasks. Inherent in this problem is the fact that in naturalistic collaborative discourse, the same propositional content may be expressed in radically different ways. This difficulty is exacerbated when speech overlaps and other communicative modalities are used, as would be the case in a co-situated collaborative task. In this paper, we conduct a comparative methodological analysis of extraction techniques for task-relevant propositions from natural speech dialogues in a challenging shared task setting where participants collaboratively determine the weights of five blocks using only a balance scale. We encode utterances and candidate propositions through language models and compare a cross-encoder method, adapted from coreference research, to a vector similarity baseline. Our cross-encoder approach outperforms both a cosine similarity baseline and zero-shot inference by both the GPT-4 and LLaMA 2 language models, and we establish a novel baseline on this challenging task on two collaborative task datasets---the Weights Task and DeliData---showing the generalizability of our approach. Furthermore, we explore the use of state of the art large language models for data augmentation to enhance performance, extend our examination to transcripts generated by Google's Automatic Speech Recognition system to assess the potential for automating the propositional extraction process in real-time, and introduce a framework for live propositional extraction from natural speech and multimodal signals. This study not only demonstrates the feasibility of detecting collaboration-relevant content in unstructured interactions but also lays the groundwork for employing AI to enhance collaborative problem-solving in classrooms, and other collaborative settings, such as the workforce. Our code may be found at: (https://github.com/csu-signal/PropositionExtraction). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Question-asking in collaborative dialogue has long been established as key to knowledge construction, both in internal and collaborative problem solving. In this work, we examine probing questions in collaborative dialogues: questions that explicitly elicit responses from the speaker`s interlocutors. Specifically, we focus on modeling the causal relations that lead directly from utterances earlier in the dialogue to the emergence of the probing question. We model these relations using a novel graph-based framework of *deliberation chains*, and realize the problem of constructing such chains as a coreference-style clustering problem. Our framework jointly models probing and causal utterances and the links between them, and we evaluate on two challenging collaborative task datasets: the Weights Task and DeliData. Our results demonstrate the effectiveness of our theoretically-grounded approach compared to both baselines and stronger coreference approaches, and establish a standard of performance in this novel task. 
    more » « less